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Multivariate Profile Analysis of Split -Split Plot Designs

and Growth Curve Analysis of Multivariate Repeated Measures Designs'

Neil H. Timm

'University of Pittsburgh

I. introduction

A classical univarlate mixed model analysis of a split-plot dc*ign as

discussed for example by Geisser and Greenhouse (1958),preenhouse and Geis-
+0

ser'(1959), Kirk (1966,. p. 250), Myers (1966, p. 223) and Winer (1971,

250), among others, is familiar to most expetimenters. The classical mixed

linea'r model for the design is

(1)

where,

Yljk u+a141/1(4(")1e5(1)P(1)jk

Is an arbitrary constani-,

at is the effect of the I
th

tratment group which is constant for

all subjects within treatment group 1,

k
is the effect of the k

th
profile condition for all sUbjects,

(as)ik Is the interaction effect of al .and ak,

s(i)j is the component associated with subject J, nested within al,

and

souk is the error component for subject j within treatment group I

. for the k
th

profile condition.

In addition, the randr.componenti sou and souk are assumed to ba

Jointly independent and normally distributed:

s
*

IN(0 pa2)

1Paper presented at the annual mdeting of the,American Educational Research-
Association, Chicago, Illinois; April 1974.,



Emil( ti IN(0, (1-p)a2)

Thus, the variance-covariance matrix E has the form

E = pa2J + (1-p)a2I = c2J + a2I

where J Is a matrix of unities and I is an Identity matrix so that E satisfies

the compound symmetry assumption. Although the compound symmetry assumption

is only a sufficient condition for exact unlvariate,f-tests and not a neces-

sary condition, Is Shown by Huynh and Feldt (1970), to analyZe split-plot de-

signs, it Is the one most often assumed,by researchers, -When.E is not of the

appropropriate form for a univariate mixed model analysts, a multivariate

analysis of the data is most appropriate. Koch 11969) reviewed the parametric

and nonparametric multivariate analysis proceduies one shoilid use to analyze.

the split -plot design given in (1) using the classical mpltivariate linear

model for arbitrary E under normality and nonnormality. More recently,'TImm

and Carlson (1973) demonstrated, following Bock (1963a, 1963b), the corres-

pondence between univariate and numerous multivgriate tests employing a multi-

varlate full rank linear modek. In this paper we extend the work of Timm and

Carlson (1973) to split-spilt plot designs and also show how the growth curve

model introduced by Potthoff and Roy (1964) and studied by Khatri (1966), Rao

.(1965, 1966, 1967), Grizzle and Allen (1969) and Klelnbaum (1973a), among

others, may be usedto analyze split-plot and split -split plot designs with

multivariate repeated measures.

2. Analyzing Split -Plat Designs

Before discussing split-split plot designs, It Is convenient to intro-

duce some notation involving the analysis of split-plot. designs and to review

=.\

the correspondende betWeen a univariate and multivariate analysis of these



designs. The adaptation of the agricultural split-plot design to the beha.V1-

oral sciences may be separated into two categories; split-plot profile anal-!

ysis repeated measures designs and split-plot trend analysis repeated mea-

sures designs. Using Fig6re I to make the distinction between the two types

of split-Olot repeated measures designs, wesay that we have a profile analy-

sis if the levels of B are not ordered and.a trend analysis if the levels of

B are ordered. The s-
!

in Figure-1 indicate that subjects are measured re-

peatedly over all levels of factor B, but that the subjects within each level

of A are different.

A

(groups)
A
2

B (Conditions)

B
2 B3

sl s
I

s
I ,

s1

s
2

s
2

s
2

Figure 1. Split -Plot Repeated Measures Design

SInce Timm and Carlson (1973) only considered the correspondence be-

tween untvariate and multivartate analysis of'repeated measures profile data,

we shall briefly review the correspondence between univariate and muitivari-

ate analysts of both types of data. For *Mils purpose, the data given to

Table I, from Kirk (1968, p. 274), are reanalyzed. Theunivariate profile

and trend analysis of the data are displayed in Table ? and: Table 3, respec-

tively. For either analysis the scores associated with factor B are assumed

to be commensurable, expressed in the same units.
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Table 1. Kirk's Data

B B
2

8
4

s
1

3 4 7 7

S
2

6 5 8 8

33
3 4 7

34 8

si

sl

si

s4

2 3

I0

6 10

2 4 5 9 .

2 3 6' II

Table 2. Univariate Profile Analysis

Hypotheses 1 oSS DF MS F p-value

I. Constant 924.50 I 924.50 = 592.63 ' < .0001

2. A p 3.13 I 3.13 2.00 0.2070

3. S(A) ... 9.38 , 6 1.56 c

-4.

4. B 194..50 6,4.83 J27.8Q, .0001

5. AB 19.38 3 6.46 12.74 0.0001

6. Error 9.13 18 0.5

7. Total 1160.00 32



Table 3. univarlate Trend Analysis

Hypotheses SS

I. Constant 924.50

2. A 3.13

3. S(A) 9.38

/OF

4. 8 194.50

5. Linear trend 184.90

6. Quadratic trend 8.00

7. Cubic trend 1.60

8. AB

9. Linear trend

10. Quadratic trend

II. Cubic trend

19.38

12. Error 9.13

13-. Linear trend

14. Qu6dratic'trend

15. tutifc trend-

13.23

3.13-

3.03

6.08

1.88

1.18

18

-MS F p -value

924.50

2

= 592.63

= 2.00

<.0001

0.2070

64.83

184.90 .182.71 <.0001

8.00 = 25.64 0.00

1.60
/ 7%
15

= 8.16 0.0289

6.46

13.23 = 13.07 0.0112

3.13 - 10.02 0.0195

3.03 15.43 0.0077

0.51

1.01

0.31

.20

16. Tote 1160.00 32

Using the restricted full rank linear model, as developed by Timm and

Carlson (1973, I974a, 1974b)' to represent the classical split -plot repeated mea-

sures design, (1)', the restricted full rank linear model for the design is
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(2)
YljX c(i)jk

1=1, ..., I; J=1, ..., N1; k=1, p

subject t6E(N,-1)(p-1) = (N-I)(p-1) linearly Independent

restrictions

.

. ,

0=

.where I Is'the treatment group index, J is the subject index, with subjects

nested within groups, and k Is the repeated measures index over p profile con-

ditions. For a trend analysis the restrictions in (2) are. modified, Table 6.

The hypotheses being tested in ANOVA Table 2 are. shown in Table 4. The popu-

lation means.associated with Kirk's- data are given in Table 5 where the fami-

liar dot notation is used to represent averages.

Table 4. Univariate Profile Analysis Hypotheses

Source Hypotheses DF

Constant

A

S ( A ) --

3

AB

Error

U'

all pf..'s are equal.

1111 a 1E12,

11I2.
=

111N,

1,00

40*

all ue.k's are equal

Plek-1111.k-111.4111'.W'

uljk-Uirk-Uijk14111J'W 7 °

N-I

(I-1)(p -1)

Total Np
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Table 5. 4ulatiOn Parametersfr Kirk's Data.

.

B
I

B2 BJ B
4

(Means)

f,
1

s1

. g
2

s
3

s
4

1.1114

.:.U1211.

)4131,

U141

orf2 -

-" 'Plii---

11I32

P142-

, 11113

P123.

PI33

,-.P143

11II4

..
PI24

P134-

PI44

- 11) I'.

P12%

P13.

1114:'.

(Means).
.

111.2 111.3 P1.4 PI

A2

sli

sl
L

s
3

s4

1121,1
,

11221

P231

P24I

,

11212

11222.-

P232

1'242

11213

u223

P233

11243

11214

11224

.

P234

P244

P21

1122-
.

P23...

1124

(Means)

U2.I U2.2 P2.3 112:4 112

U l u?, ux UA U___

Using the means in Table 5, :the hypotheses, tested in Table 3 are

summarized In Tible 6; those sources not shown In Table 6 are identical to-

the expressions given'inTable 4.

0
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N Tab le

'Source

Lihear trend

Quadratic trend

Cubic trend

AB
LI near trend

Quadratic trend

Cubic trend

Error*

Linear
(Restrictions)

Quadratic
(Rest ri ctions )

Cubic
(Restrictions)

e

. Uni varl ate Trend Analysts Hypotheses

Hypotheitis

..2+;..3+3LI :4 =

P. 11..2'.1:1'..3+11 4 =
+3 .' = 0

31. .1 P.2 .3 P.,.4

3111.1-1-11.2+111.3+3111.4+311214-P2.2-112-3-3142.4

PI 1+Pie 2+112.3-P2.4
a 0

I+311 1°')3t1 I 3+Pl 4+112,1-31.12.2+3112.3112.4.

-3111 1'1- 112+11113+311114+31112141122-P123- 124'

311121-Y 1221-111231.30124+3/1131+P132-11133-34134

-311131111324133+314131141411142-11143-311144 w=

-3112.11-11212+1.1213+311214+.311221+11222-11223-3/1224

0

3P22 I -11222+°223+331224+31/23 "232-.11233-31'234

3112 3 1 v232+1'233+ 3P 2341-3/124,1:1.31242-1124 3-3/12 44 =

u -U -II 11 +U -_0111 112 113 114 121 1-22 123 124
. .

u +13 -U u + = 0
121 122 123 124 131 '132

u
133 134

-11 +u -u +u -0 = 0
131 , 132 133 134 141 142 143 i 44

u -U +U -U 2+u
=

21L 212 213 214 221 42 223 224

1122
-U +U -13 41 -p =

1' 222 223 224 231 234 233 234

u -u P +u -P 42 tv -P a 0
231 232 233 234 241 242 243 244

\

u +3u -3u +u +u
r
-3u -"1-3u u 0

I I l 112 113 114 t2 122, 123,
-

124 7

u +3u -3u +u +u
1
-3u 4.3p ..,11 = 0

121 122 123 124. 13 132 133. 134

- +311 -311 +u +u -30 +31.1 -u = 0
131 132 133. 134 141 142 143 144'

_ u +311 -3U
4

+11 +II -3u +3U -u 0
211 212 23 214 221 222 223 224

1122 1+3P.222-3/1223441224441231-3/1232+311233-11234
0

- u +3u -311 +u +11 -3u +3u -u
0231 232 233 234 241 242 213- 244

DF,

1

6



Following Timm dild Carlson-(,1974a; 1974b), (2) is written as follows:
a

(3)

Thee form of the hypotheses

= W + 't

fki-x 1 N.xp pxl Nx I

sub:49ot to a set of restrictions

Ft p = lo

ti ti

.p p x j is ''x I

A 1

411 Itlales 4 and .6 is
,

'

-..) . N

(4) 14: , / 0 = 0
.N.,I,

vt.ixip pxl vhx I
. Nke

, , ,

The hypothesis sum of squares, SSh, for each. hypothesis has the general form

7.

(5)

Where

(6)

SSh = (Clii)'(C'(FD (C'a

A

". ((I -D R(R'D R) R1).11,
t, tin.

=
, NI!

D'= W'W and p = WW1 -W! D W y: The-sumTefictdares for error, under a
41

fixed effect model, is

(7)

A

SS
e
= (v-WaMr441,0)

ft,

The degrees offreedom associated with any SS
h

is v
h'

the full row rank of C',
,

and the degrees of freedom for SSe is ve = N -p +s where 14141s the total number

of obsarvaffons, p is the full column rank of W, ands Is the full row rank of

R'.

If/the vaelance-ooveriance, matrix E for the data In Table I is. not of
i

theprOper form fOr a univariate analysis the correct analysis of the data

is a multivariate analysis. The advantage of the multivariate analysis over
, 7

the univariate analysis is that the analysis is valid'whether or not Esatis7,

fies the compound symmetry assumption. In addition, lmivariate tests are
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easily. obtained from some multivariate tests- To analyze split -plot repeated

measures data using a muitivarlate model we again must have commensurable

units over conditions, factor B; furthermore, the number of subjects within

each level of A must be greater than or equal to the number of times the sub-

Jects are observed over the repeated measures faCtor.

The restricted full rank multivariate linear model is

Y = W U + -E
o

p NXq qxp Nx p

ect to the restrictions

U 0

rxq..q,xp rxp

where Y is a-data matrix, Weis a known full column rank design matrix U is

an unknown parameter matrix of population Means, and Eo 1s-the random error

matrix. The matrix R' of full row rank r is. the restriction matrix. Removing

the restrictions frOm 01, the unrestricted multhiariate 14near model Is rep-

resented by

(9) Si: Y =.WU + Eo

In either case, we assume. that each row vector' In Y follOws a multivartate nor

mal distribution and that

( 10)

E(Y) = wU

N(y) = INR,E

TIP test hypotheses of the o'rM
.7/

(I I) H: C'UA =

under Z, where C'(vh xq) is a. khoWn matrix of feat numbers of rank < q and

A(p x t) is a known real matrix of'rankot < p, hypotheses and error sum of

squal-es and products matrices of the font

4



(12)

Sh s CC'teP(C'(F0
-1

F')C) (C'oe)

Se 0 Al(SSe)A

are constructed where'

SSe =

= cI-D/R(WD( /R)*Un
(13)

= (ww)
-1
WIY = D

_LI

W'Y

letting s u min (t, vh), muitivariate hypotheses of the form given in (II) are

directly tested using several- multivarlate criteria which are ,funclions of the

and As .of the determinantal equation

(14) Ish-xse) 0

4

A brief review of several multivariate criteria is contained.in Timm and Carlson

(1953). For the purposes of this paper, we,shall use only Wilks'l-criterion
.

;05)

The multivariate hypothesis is rejected, if

.

(16) A < e(t, vh,.

-s
= II (1+i)

Se+Sh( 1=1

where ve a N-q+r Is the degrees of freedom for error. A general discussion of

multivariate crlterta as,welLas the construction of simultaneous confidence

bounds for functions of the forM *;= c'Ua of the elements of U are discussed

In Timm (1974). A general approach for investigating arbitrary 'functions of.

the elements of U, usinga multivariate simultaneous test procedure, has been

developed by Mudholkar, Davidson and SubbaLah (1973). Percentage. points for

the general U-distribution have been tabled by. Wall (1967).
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ti

To test hypotheses und3r Q or sl given a parameter matrix U of means,

we merely have to construct matt-ice-, C' and A to represent the hypotheses..

The general form of U for a. mylttvariate analysis of a split-plot design is

t

u11 V12 vlp

(17) U a V2I 1122 v2p

Ix p

PII uI2
... UT

To analyie a split-plot design using the multivariate:model, the unre-

stricted full rank multivariate model is employed. Multivartate tests of A,

B, and AB, differences.between groups, differences among profile conditrons,

and the interaction between groups and profile conditions, respectively, are

represented by

A*:

(18) B*:

(AB)*:

u11

v12

vlp

v12-v13

P
I p-I)

-u
1p

sV2p

12

v22

= =

.

v21-V22

v22-v23

u2(p-1)-v2p

VIp

hip

V2p

.= 0.0 =
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when profile data are analyzed. As shown by Timm and Carlson (1973), only

the univariate test of AB can be recovered from the multivariate test (AB)*,

provided the post matrix A, when stating the hypothesis in the form C'UA = 0,

Is appropriately normalized. This is not the case for the tests of A* and B*.

The univariate tests of A and B cannot be recovered from the tests of A* and

B*. Alternatively, if the test (AB)* Is not significant or if we ignore the

possibility of an interaction between A and B (groups and conditions), the

tests of A and B are written 'as

(19)

P P P
A: i! pi lip = E 1121/1) = .0. = E u f/P

J- ' J=I j J=1 j

I I . I

B: E u
II
/I = E11

2
/I e ... = E

)

//

1=1 1=1 .. 1=1 0

If there are an equal number of'subjects in each group. From these statements

of A and B, the univariate tests of A.and B are Immediately obtained provided

the post matrix A in the hypothesis, C'UA = 0, is appropriately normalized'.

That is, A must be normalized so. that A'A = I. Several other multivariate

tests are also.testable using the multivariate representation for equal and

unequal numbers-'of `'subjects within each level of A; however, these are dis-

cussed in detail by Timm and Carlson (1973) and will not.be considered here.

To illustrate how we would test A*, 8* and (AB)*, Kirk's data are re7'

analyzed. For. Kirk's. data,

To test A*, the matrices

ill 1112 1113 1114

1121 1122 1123 1124

CA* = (I -I) and A = I
A*

are selected. To test 8*, the matrices

[

2
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CB
* 2

and A=

0 -I

are used. Final ly, (AB)* may be tested by using

C(AB)'
*

= (I -1) and A =

I 0

0 -1

0 0

The MANOVA table for, the analysis is shown in Table 7.

0



Hypotheses

Table 7. Multivariate Profile Analysis I

MSP SSP/v OF A

41.

15

p-yalue,

B*

8.00 (Sym)

4.00 2.00

6.00 3.0.0 4.50

[ -8.00 -4.00 -6.00 8.00

3.25 (Sym)

7.75 30.50.

11.75 28.50 42.50

2.00 (Sym)

(AB)* -1.00 0.50

7.00 -3.50 24.50

Error

A*

(AB)*

1.250

0.667 0.667

0.583 0.333 0.500

0.000 -0.167 ' 0.167 0.667

0.583. (Sym) )

70.250 0.500

0.083 0.167 0.833

0.583 (Sym)

-0.250 0.500,

0.083 0.467- 0.833

6

6

0.137

0.004

0.144

4?-

0.1169'

0,0002

0.0371

Alternatively, testing A, B, and AB with the post matrix A normalized,

the following matrices are employed
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and Po=

CAB = (t -I) and A=

(1 -1) and A =

0.707107

-0.707107

0.000000

0.000000

4

1

0.408248

0.408248

-0.816497

0.000000

0.288675

C.288675

0.288675

-4).866025

0.707107 0.408248 0.288675

-0.707107 0.408248 0.288675

0.000000 -0.816497 0.28867

0.000000 0.000000 -0.866025

e.

The MANOVA table for this analysis ft displayed in Table 8.
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Table 8. Multivariate Profile Analysis II

Hypotheses MSP = SSP /v DF p-value

A 3.125 0.250 0.2070

'2.250 (Sym)

10.82510.825 52.083 0.1127 0.0014

17;759 85.442 140.167

1.000 (Sym)

AB 0.000 0.000 1 0.144 0.0371

4.287 0.000 18.375

Error

-1.363

0.292 (Sym)

B 0.024 0.264

0.068 0.334 0.965

0.292 {Sym).

AB 0.024 0.264

0.068 0.334 0.965

From the entries In Table 8, the univarlate F-ratios for, testing A -8

and AB are Immediately

matrices, the corrospo
,

produCts matrices, and

(1973). That, is,

obtained by averaging the diagonal elements in the MSP

nding diagonal eltirents In the erro-r-Mean square-and

forming the ratio of these averages, Timm and Darlson,

3.125'

7 2.00-4, F(1,6)

1.563
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F
B
=

F
AB

=

194.50/3 64.83
127.88 F(3,18)

1.521/3

19.375/3

0.51

6:46

ti

= 12.74 ..., F(3,18)

1521/3 0.51

The hypothesis and error degrees of freedom for each univariate F l-ratio are

obtained by multiplying the degrees of freedom for each multivariate test by

the rank of the post matrix A corresponding to the test. Hence, for the ratio

F
13

the univarlate degreet of freedom are

vh = vBR(A) = 1.3 =. 3

= v R(A) = 6.3 = 18
e

I

;The others.f,ollow

To Investicate,trends:in split - plot designs, Potthoff

-multiveriate unrestricted full rank linear growth curve model

(20)

is employed where

Yo
W

B
.P Eo

N x q N xa gxp pxq Nxq

Roy's (1964)

E(Y0) = WBP

V(Y
o
) = IN 8 E

The matrix Y
o

is a data matrix, W is a known.full rank design. matrix, 8 Is an

unknown matrix of regression coefficients, P is 6
,

known matrix of rank i < q,

E
o

le-the-ran&m.error and-the .rows of Y- are-independently normally

distributed. Implicit in the model is the assumption that each vector response

--------verfatfr-can-isil'd as a linear regresstOn model Of the formh

1

Y1 P1,113,1 ki
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where xi(q x I) is the observation vector for the I
th

subject and 0. is a
ti

vector of unknown regression parameters.

To reduce model 120Y to Model (9), Potthoff and Roy suggested the fol-

lowing transformation of Yo to Y,

(21) Y = Y G
-1

Pl(PG
-1

P')
-1

where G(q x q) Is any symmetric positive definite weight matrix either non-
.>

stochastic or independent of Y such that. PG
-1

P' Is of full rack. Since W has

.

full column rank, an unbiased estimate of B, under the transformation', Is

(22) (WW)-1W'Yop-'P'(PG-'P')-1

Unc1et_the-trans-for-ma-tion-i---eachrow-of-Y--.1-s- normally wTth variance-.

covariance matrix

E = (OG E G
-t-

P'1PG-
-1

P')
-

O
p x..p

however,.. the minimum variance unbiased estimator of O'is

,

(23) B = (W'W)
1

WIY
o
E
o

1

P'(PE
o
P')

This is unfOrtunatasInca.E0 is usually unknown In practice.

Notice however, that if .p, = q, the transformation defined.

:

duce to

(24) = Y P
I.

0

(21) re-

so t there. IS no need to choose G. Bock (1963b), developed a procedure for

this case sing orthogonal polynomials.

lf,p however, the choice of:G-As important:since it affects the

pcwer of tests and e widths of confidence bands. The variance of the estimator

B
-

increases as CA depar fr o E A simple choice of G is to set G = I.

Then

(25)

N
Y =
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Such a choice of G will certainly simplify one's calculations; however, it is

not the best choice in terms of power since'inforgation it lost byred6ting

Yo to Y unless G is set equal to Eo. This suggests obtaining an estimate. of

E
o

based on the-data. Khatri (.1966) showed that the maximum likelihood esti-,

mator of B-Is given by

(26) B = (WW)-110PY:io
o o
IP'(PE" P1)-1

where E
o

is the maximum likelihood estimator of E
o

defined by

Eo
= Y'o (I-W(W'W)

-I
Wi)Y /N

.Alternatively, we could have used

S = Y'(I.-W(W'W) W')Y . or S ='S/(N-I)

A

instead of E
o

since B does. not change for these estimates.

To avold,the arbitrary selection of the matrix G under the-Potthoff-Roy

model, Rao (1965, 1966) usingthe method of covariance adjustment showed how

additional information in the-sample. Yo could be reCovered by incorporating

into the growth curve model.(g-p) covartates.: However, .it was Grizzle and

Alen (1969) that unified the previous approaches. They showed how Rao's re-.

sLits using. 'a covariance model were Identical Khatrl's result, and de-,

scribed a proCedure.for using stochasttc2weight,Matrices other than Ea
4

If it

was desirable.

In summary; when p.< :the PotthoffRoy reduction Using G'm I is egui-

valent to not using covariates in the _RaO-Khatri fOrMulation. if.the'werght

matrix in the PotthOff-Roy transforMation, thts'is'egUiValent to using

gr-p covariates;in the Rao;-Khatri-redUttton. When R = q, thellao-Khatri proce-

dure is not applicable since the Potthoff7Roy transformation does not depend

on G. That Is,, the estimate fOr B obtained by Rae using (g-p) covariates,by



Khatri using the maximum likelihood procedure and by Potthoff and.Roy weighting

-
by G

I
=

o
I

are identical. The variance-covariance matrix of B is given by

(27) Var(8) = (W'W)-1 0 (
-1

P').
-I

N-g-q+p-1

Rao (1967) and Vilifiers (1967).

Hypptheses of interest underthe growth curve mode) are usually stated

In the form

(28) H: C'BA = 0
o

where C'(v
h

x g) is of full row rank v .and A(p x t) is of full Column-rank t..

Using Potthoff and Roy's,(1964) procedure for testing H, the data matrix Yo

Is transformed to Y using the transformation

Y = YoG
I

Pl(PG P') - 1

and hypothesis and error sum of squares and products-matrites become

(29)

S = (C1BA)'(C'(W'W)
-1

C)
-I

(C'BA)

S
e

= A'Y'(I-W(W'W)
Al
W')YA

.

The hypothesis Is rejected if

A < U (t, vh, ve

where ve = N-51.. However, PotthOff and Roy's formulatIOndoes not allow G to

be stochastic unless it is independent of Yo. That is, G must be chosen in-

dependent of the experimental data under investigation. Hence, we may not set

G = E
o

a
Alternatively using the Rao-Khatrl reduction,,,we mayseiect E0 = G; how-

ever; then

(30)

S
h

(CIBA)'IC'RO -1
(C'BA)

= A/(PE
o
P ) A
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and

1 1 -1 1 ^-
(W'W)

-1
-1-(W'W) W'Y (E

-
-E

o
1

P'CPE Pt) PE
o

yylw(wtw)-I
o o

The hypothesis is rejected using thls.procedure if

A < u (t, vh, "E)

where
e

= If p = q bo-th procedures give identical results.

To- ana 1 yze K 1 rk da 1-ng- -the growth- curve-- made I , -the mode 1 1

Yo = W

6x4 8x2

If we assume that p = -q where

e3 7 7

6 5 8 8

Yo=

_

3 4 7 9

3 3 6 8

I 2 5 10

2 3 6 10

2 4 5 9

2 3 6 11

B

2x4

0.

-P t E0

4 x 4 8x4

I 0

1 0 810 811 812

I.
620' 821 822

0 I

0 1

0 1

Using a matrix of normalized orthogonal

.5 .5 .5 .5

-.67082 -.22361 .22361 -.67082
(31)

.86-

823

polynomials for the matrix P,

.5 -.5 -.5,

- .2236 1 .67082 -.67082 .22361

The functional form of the pOlynomlal fit'to the data using (31) Is

ElYo1
2

2x-5 x2 -5x+5 . 10x3 -75x2.1467x -lop

+
1

+ 0
12

2I/55
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for x = 1, 2, 3, 4. Alternatively, an unnormalized matrix of orthogonal poly-

nomials could have been used. Then,.

1

-3 -1 I

P =

I -I -1

-3

and,

E(Y
91

J) =

for s =,

and

for x = 1, 2,

0
10

,

3,

+ 51

4.

4.

1(2x -5)

Finally,

P

-) = 0
10oli

The reason

012(x2-5x+5) + 013

if a Vandermode matrix

1111
1 2 3 4.

1 4 9 t6

8 27 64

512X2 +

for selecting (31)

10x1,75x2+167x-105
A

3

is used,

13513

for P is that the transfor-

mation from Yo to Y becomes

(32) Y = Y
o
P-
-1

= Y
o
P'

since P is an orthogonal matrix. Furthermore,

B = (WOW) = Y.P

where Y.' is the matrix of means. Notice however that if p < g, G = I and. P is

defined as in '(31) with

P = P1'`

.qxq 2
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so that

and P (p x q) the firSt p rows of P that the transi'prmation from Y
o

to Y is

Yo'(PPI)
-I

Y= P'
1 1, o 1

I

B = Y P'
I

which is equivalent to eliminating q-p columns" of"B under the transformation

given in (32) or ignoring the q-p Pccvariates In the Rp-Khatei reduction. If
f

p c q.under the Rao-Khatrl formulation,

1 ^- -1
B =,Y.E0 P11PIE0 Pp

whiCh is not.the same ac B using G = I.

In analyzing a split-plot design we first plot the means.. For Kirk's

data, the means are plotted in Figure 2.

I"

9-r'

8

7

6

5 :

4

3

2

Figure 2. Means .for Kirk's:bate
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From Figure 2, it appears that the trend for AI is cubic but that the trend

for A
2

is'quadratic. This distinction In growth curves cannot be made using

Model (20) since implicit in the model is the assumption that th-----&OiCted

value of each indtvidual's response is from the same.family (Some (p-I) degree

polymonial). This sometimes causes US to overfit some growth carves. Models

,which avoid this are'discUtsed by KleinbaUm (1970, 1973b).

With the groWth curves plotted, we can either determine whether the

growth curves are quadratic rather than cubic and then test for paralleitSm

with p < qor we'mds, test for parallelism -with p = q and then determine the

degree of the polymonial required ,to describe the growth curves. For the

firSt.procedure, the matrices to test that the cubic term iszero are

1.

° and A

. 4

These are lett the hypothesis

H: 8 )3 237
. .

0

0

0

0

If thls bypothltfs' IS..tenables, the,paraltelism hypothesis would be *rested by

setting'

and

(32)'
0

(

.,5 .5 .5 .5

-.67082 -.22361 .22361 .67082/

.5 -.5. -.5 .5
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with p < q and G = Eo for the Rao-Khatri procedure or G = I using the Potthoff-

Roy technlque. The hypothesis being tested Is

(33) H : 1.811 = 821

P 812 822

Alternatively, we may test for parallelism with p = q. The hypothesis is then

011 021

12 822-
(04) H*: R

613 023

and the.. matrices C' and A are defined by

' 0 0 0

1 0 0

CI.= (1 -I) A =

Using this latter procedure for Kirk's data,

.13 = Y.P.'

ct

[

)1.375 '3.522 0.375 -1.062

=

0

10.125 6.093 1.625 0.168

o

Sh = (C/719A)1(C'(W'W)-1C)-1(C18A)

= (C/Y.P'A)'(C'(WIW)-1C)-1(C'Y.P4A)

= A"Y:C(C'(W1W) IC) _ IVY:A*

where A* = PIA which satisfies the condition that All'A* = I as.in profile

analysis since P is orthonormal and

S
e
-= A'PY'(I-W(W'W)

-I
W')Y

o
P'A

.

-
= O'Y'(I-W(W'W)

1

o
A*

o

For Kirk's data,

0,



f 1.653

0.804 0.391

(Sym) )1

Se =

0.791 0.384 0,378

0.759 (Sym)

0.203 0.234

0.034 -0.049 0.147
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and Wilks A-criteiron is A = 0.144. Comparing A with the a = 0.05 critical

'value, Ua(3, I, 6) = 0.1683, the parallelism hypothesis is not.tenable. The

p-vatue-far-th-uteST-JA a
P

6.0371. As expected, this result is identical to

the multivariate test.of interaction in profile analysis for the transfor-

mation given in (32). For this reason, the interaction test in profile anal-

-ysis is often referred to as the test of parallelism.

To determine the degree of the polynomial required to describe the re-

jection of the parallelism hypotnesis, untvariate F-tests are constructed by

dividing the diagonal elements of Sh and Se by their degrees of freedom and

forming univariate F-ratios. That is, beginning with the highest order term,

Fcubic

F -
quadratIc

0.234/6

0.378/1
= 15.43 n, F(1, 6)

0.147/6

0.391/1

F
linear

10.02 n, F(1, 6)

1.653/1

13.07 1, F(1, )

.759/6

Comparing each F-ratio with Fa-(1, 6) = 11.09, where a = /3 - 0.05/3 = 0.0167

to control the error rate at a nominal level less than or equal to a, we be-

gin by testing the higher order terms first and we stop testing. when the first

significant F-ratio is reached. For Kirk's data, -a cUbic trend best describes

nonparalletism. This procedure is seen to be identical with the univariate

analysis. If p < q, this is not the case.

If the parallelism hypothesis is tenable, we would next test to see

whether the growth curves are coincident. Of course, we could test this
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without first testing for parallelism. To test for coincidence with p< q

(the cubic term being zero, say), the hypothesis Is

BIO 620

(35) H
c

:

811 821

( 812 822

with

C' (I -I), A = 13

P defined in (32), and G = I or G.= Eo depending on whether we use thelPofilhoff-

Roy model or the Rao-Khatri model. With

0/0

p=q, the

20

test for ooncidenceHs

(36) H*:
$

11
=

21

812 '822

B3 623

Then

C' = (I -I), A = iQ

an P in (31) are used. When p = q, this test is identi-cal to testing the

by othesis A* in profile analysis.

Another test which may be of interest when p = q Is the growth hypothe7

(3 ) HG*
0

(

II 812 813

821 822
823

Thi is lientical to the test of 13* in profile analysis.. This is not the case

If < q.\:

If the parallelism hypcthesis is tenable, but the coincidence test is

rei cted, itek may still investigate trends over B with the trend hypothesis



(38)

If p = q. For this test,

2 2 2

HT: E Oil E S12 E S13
1=1 1=1 1=1

I 0 0

= (I I) and A =

29

0- ___I___ _0-

0 0 1

This Is equivalent to the test of B studied in profile analysis. To see this

using Kirk's data, even though the parallelism hypothesis is not tenable,

(Sym) '0.759

[

23.112 (Sym)

4.808 1.000 and Se = 0.203 0.234S
h

=

-2.150 -0.447 0.200,y 0.034 -0.049 0.147

.

so that A = 0.027 which is compared to.14/
05

F = 0.1683. As claimed this is
,

m
the result reported for testing B Gn Table 8. lo investigate trend following

the test of HT, we proceed as we did when testing for parallelism when p = q.

That Is,

F
cubic

F
q adratIc

e
i, ,

F
linear

-

=

0.200/1

=

=

8.i6 ti F(1, 6)

25.64 q.. F(1, 6),

182.71 1.. F(I 6)

0.147/6

1.000/1

0.234/6

23.112/I

0.759/6

As expected, these results agree w4th those given in Table 3.

If p < q, the test of HT would be- written as

2 .2
(39) HT: E Bil =.'E 012 = 0'

1=1 1=1

If the cubic term i Is zero.



Giv_in that both the coincidenCe-and hypotheseS are tenable,

we would analyze the data for trend over B with either the Potthoff -Roy or

RaciKhatri models by treating the data as a single group. The advantage of

this procedure is that the degrees of freedom for error are Increased since

the variation attributed to the group by conditions variation Is pooled with

error.

3. Multivariate Profile Analysis of Split -Split Plot DenIgns

The problems inherent in the analysis of a split -plot design become

more complex in a split-split plot design. The classical univarlate mixed

model for the simplest type of split-split,plot design is

(40)
Yijkm 11+°11+Bk+Ym44")1")im+(BY)kni"c1")1km

+S(1).14400(1)jk1"(YS)(1),(1)Jkm

1=1, ..., I; j=1, J; k=1, K; m=1, M

where smj ti IN(0, pa2), (0s)(i)jk pa2),(ys)(1)jm ti IN(0, pa2),

cmikm IN(0, (.1-p)a2) and (1)Jkm, (YOnum, (10)(1)jk, smi areJeintly

independent. Thus, the variance - covariance matrix satisfies the compound,

symmetry assumption. Assuming a 32 factorial design within subjeCts, the lay-

out for the design specified in (40) is given in Fiore 3. The s
1

in Figure

3 indicate that subjects within each level -of A are observed repeatedly over

all levels of Band C so that the units of measurement are commensurable over .

B and C.



model

Al

A2

B1

CI C3

s
I

s2 s2 s,
1

3T

,Figure 3. Simple Split -Plot Design

Using the artificial data in. Table 9 and the restricted full rank linear

lJkm ijkm (i)jkm

(41) subject to the I(J-1)(K-1)(M-1) linearly

Independent restrictions

irkmIlijk4mPlirkymPijkm'illirkrePijk110- 1

the ANOVA-analysis for the data is shown in Table 10.
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32

Table 9. Data for Spilt -Split Plot Design

B1

C
2

CI

B2

C2 CI

s
I

s
2

20

67

21

48.

21,

29

32

43

42

56

37

48:

32

.39

.s3 37 31 25 27 28 30' 31

s4 42 40 3C 37 36 28 19

s5 57 45 321 27.. 21.. 25 .30

s6 39 -39 38 46 54 43 31

s7 43 .32 20 33 46. 44 42

8

s9

35

4r

34

32

34

23

.39

.37

43

5.1

319

39

35,

27

s
10 39 32 24 30 ,35 31 26

s 47 36 25 31 .36 29 21

51
2.

53 43 32 40 .48 47 46

s
3

38 35 33 38 42 45 48

s4 60 51 41 54 67 60 53

37 36 '35 40 45 40 34

s; 59 48 37 45 52 A4 36

si 67 50 53 47 61 46 31

s;' 43 35 27 32 36: 55 33

s;- 64 59 53 58 62 51 40

sio 41 38 34. 41 47' 42 37

C2 C
3

322 32

40 4.1

33v 34

27 35

29 29

29 28.

37 31

39 42

28 30

29 32

24 27

50 54

48 49

52 50

40 46

44. 52

41 50

33 32

42 43

41 46



33

Hypothesis

Table 10.

SS

Univariate

DF

Profile Analysis

PAS. F P -value

1. Constant

2. A

3. S(A)

275968.66

3042.22

6408.90

I

I

18

275968.66

3042.22

356.05

1

=(-3 4 775.08

134 = 8.54

<.0001

0.0091

4. B

5. AB

6. SB(A)

634.84

18.71

3489.48

2

2

36

317.42

9.36

96.93

= 3.29

() = 0.10
6

0.0487

0.9051

7. C

8. AC

9. SC(A)

10. BC

ABC

12. Etror

427.81

6.21

515.16

2

2

36

213.91

3.11

14.31

( 9) = 14.95

04 = 0.22.

<.0001

0.8036

2440.89

67.36

1589.76

294610.00

4

4

72

610.22

16.84

22.08

= 27.64

(
11

= 0.76
1

4.0001

0.5547

Total 180
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. the I

Using the

th
level -of

model parameters

population means In Table 11 for the j
th

subject within

A, the hypotheses being tested In terms of the full_rank

are suMmarized.lmTable 12.

C
3

Table II. Populatior, Meads

3

c
2

111,111 /11j12 111121 Ij1j22 111j23 Pij31 Pij32 tilj33



Source

35

,

Table 12. Univariate Profile Analysis Hypotheses

Hypotheses Dr

Constant

A

S(A)

B

AB

SB(A)

AC

SC(A)

BC

ABC

Errol`

=0

all v 's are equal

P 0 v12.. m =
12.. 1J..

III.. =-1I2.. '" PD..

all V
..k.

's are equal

u -V -11 41 40= 0
1.k. l'.k. 1.k'. 1'.'.

Pljk:-PIrk.11,1jk'.4111J'10.

.
'

. .

Prjk.
_
PIrk.

_
l'Ijk'.

..11

Irk'.
= 0

. .

& IA.'
...m

!* are equal

.v V 11 +v = 0
1..m 1'..m 1..m' 11..

.

1j. I.&v -v IJm 11U& 1.1

W.
.-. 4 = 0

P
.J.m

P
,J,.m

1

.J.m,
+1I

r .m I
P P 11 '111 = 0
..km ..klm ..kmi ..k're

U -V -P 11

1'.jm 1.j'm P.J'm

.411.joeUlf.jm1+111.jimC411t.pm, =

(Same as the restrictions in (41)).

I -I

I(J-1)

K-I

(I-1)(J-1)

I(J -1)(K -1)

.(M -1)

(I-71)(M -I)

1 Total LIKM
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To analyze the data In Table 5 using the unrestricted full rank multi-

variate linear model, the means in Table 13 are used to construct U and the

design matrix W is

1 0

I 0

1 0

I 0

1 0

I 0

I '0

1 0

1 0
(42) W

0 1

0 1

0 1

0 1

0

0

.0

0 f

0 1

Table 13. MultIvarlate Mew*

BI

2

B
2

C
2

ull U12 1113
1114 PI5 1116 11I7 U18 uI9

U21 1122 1123 1124 1125 1126 U27' V28 1129
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The first hypothesis of interest using the multivariate model is to.see

whether there is an Interaction between A and the levels of B, C and BC which

we shall now call the test of parallelism. Following the formUlation for

testing interaction (parallelism) for a split -plot desipn, thA matrices needed

to test for parallelism,,wi*h the hypothesis stated In the form CPI.JA"= 0, are

(43) = (I -1) and A =

when

(44)
[Pll P12

P21 '22

0 -1 I

o it_

-1 1 0 0

I 0 0 -1 0 -1 0 0

0 -t 0 1- 0

I -1 I 1 -1 -I I

1, 0 -1 0 1. 0 -1

0 -I 1 0 A 0

0 -1 -1 1 0 0

0 -I 0 =1 0 01'0

4411.1.N01..,

B C BC .

--'

P13 u14 PI5 Pi6 P17 PI.8 'l9

P23- 24 1'25 1'26 Y27 .P28 v29.

ThEk first two columns 'f the post'matax Aare formed to evaluate. AB, the

next two are used to investigate AC, and the last foUr, constructed from the

first two.by taking.Hadamard vector products, are used to test ABC. Normal-

!Zing the post matrix A So that A'A I and separating out the subMatrices

used to test AB, AC, and ABC, we ave ge the diagonal elements of:.the sub-

hypothesis MSP and error component truces, as we did for the split-plot

design, to obtain the univariate F-ratios. If the design on Band Cis a
is .

22 rather than a 32 design, the dagonal elements of the MSP matrix contain
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the univarlate mean squares for testing the univarlate hypotheses AB, AC, and

ABC.--

To test BC, given that the parallelism hypothesis Is tenable, the ma-

trices

(45) C' = (I I) and A,=

71

0

0

0

0

1

0 0

I 0

71 0

0 I

0 0

OT -I

0 -I

=1 0

1 I

.0

0

0

0.

1

71.

.0

-1

I

are used.' The pclist matrix A is constructec.by arranging. the elements of U

in table form, Table 14, and forMing four linearly independent contrasts such

that

(46) = 0

. Table 14. :Rearranged Means for the Split -Split Plot Design

C
2'

411 III u12 = 712 11' 713

PI 721 .I5 = 722 P16 = 723

PI7 731 .18 732 U19 = 733

c C
2

1'21 7 II P22 =7I2 P23

Y24. = 721 /125 .1112 k 26 123-

. W27 = 731 P28= 732 P29 733

a

Normalizing A and averaging the.diagonal elements -of the hypothesis and error
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mean squares and products matrices, the unlyariate F-ratio for .testing BC is

immediately obtained. If the.parallelism hypothesis is not tenable, we may

tee BC with (BC)* by using C' = 12 and the post .m6140.1% A deflined in 44'1.

The unlYariate test of BC IS not obtained from testing (BC)*.

To tes+ the main effect hypotheses A, B and C, under parallelism and

no BC interaction,rw4 use the lollow nq matrices for C' and.the powrmatricet

A when the hypotheses are expressed in the form'CIUA = 0:

(A): C' = (I -I) A =

4

(B): Cs- = (I I) A

(47)

4

0

,0

'1 0

0 1

0 I

0 1
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I.

0

0

-1 -1

.b

C' = 1) A =

-4 -1

p.
I 0

0 o.

-1 I

NorMalizing the post matrices A in (47), univariate tests are easily obtained.

Tests of A, B, and C which do not require parallelism are denoted by 41,*, S*,

.abd The.metrices defined _below are-used to test'these hypothe4es,

(A*): C' = (I -I) A = I9.

(B*): =
2

A =

I

0

0

0

-1

-1

-I

0

0

I

I

-1

-1

(48)



(C*): CI =12

0

1

41

To write each of'the multivariate hypothetes in terms of the elements of
o

U, gimen in (44) for'the example, we merely have to substitUte the.hypothesis

test matrix C' and the post matrix A into the general expresSion for C'UA = 0

for each hypothesiS. To test each of the preceding hypotheses, the expressions

for Sh and .Se given in (12) are evaluated using the data In Table 9. To show

the correspondence between the multivariate analysis In Tath 15 and the unlvar-

late analysis in Table 10, the mean square and products matrices are. displayed;

the post matrix A for each hypothesis without an asterisk (*) has been normal-

ized so that A'A = I.
:

Averaging the diagonal elements of,:the hypothesis test matrices of AB,

AC and ABCwithin:Parat, BC, C, B and A. in Table 15 and the diagonai elements

of the corresponding error matrices, univariate split-split plot F-ratios are

Immediately constructed. To Illustrate, we test ABC and C:

FA
(5.513+2.604+11.704+47.535)/4 16.48

4101111111

(20.357+31.497+8.778427.700)/4 22.08

(261.075+166.736)/2 213.91

(23.475+ 5.141)/2 14.31

14.95

.76



Hyp.

Paral

BC

C

B

A,'

(BC)*

B*

A*

Error
Paral

BC

42

Table 15. Multivariate Profile Analysis of a Split -Spilt Plot Design

DF

1

1

2

18

0.033
0.789
0.367
0.269
-0.429
-0.295
-0.625
-1.529

MSP

AB

18.678
8.679
6.378

-10.147
- 6.974
-14.785
-29.797

AC
4.033
2.964 2.1781

- 4.715 3.465
- 3.241 - 2.381
- 6.871 - 5.049
-13.846.-10.174

5.513
3.789
8.032
16.188

ABC

2.604
5.521 11.704
11.126 23.587

(Sym)

47.5351,

1872.113 (Sym)

13.965 0.104
-712.198 -5.313 270.937
746.587 5.569 -284.020 297.735

261.075-(Sym)
208.640 166.736

14.133 (Sym)
272.201 480.711

3042.22

[3870.251
,1956.651 989.300
723.750 364.200 166.500
1508.051 762.200 285.900

783.23
933.67

(506.50
980.40

(Sym)
11_13.03 )

(Sym)

1944.40

(deleted, lack of space)

06.313

AB

25.606 97.5511
20.619 1.749

9.998 44.640
-9.445 10.182

t 14.754 -7.007
22.132 5.946
20.531'25.214

(Sym),

588.100

; AC

7.185

(Sym)

6.836 2o.sor r."-._
0.982 16.135 20.357 -----..,ABC 1

10.144 18.444 18.335 31 .497 ----..7.......,

2.214 0.538 -0.256 2.997 8.778 ------....

-0.870 6.548 9.002 5.106 12.761 27.7001

44.424
-0.314
-9.057

( 6.008

0.099
0.002
-0.025

34.188'
-2.217-

(Sym)O 1

9.622 j

0.809

0.225

0.325

0.676

0.678

0.209

0.316

0:670

0.533



Hyp. OF

18

B 18

A 18

(BC)* 18

C* 18

B* I8

18

p-values

MSP A

23.475 (Sym)

2.205 5.141

119.417 (Sym)

-12.267 5.141

356.05

[117.694 (Sym)

87.76 1 43.633
57.472 28.200 115.611
46.217' 22.922 136.775 53.544

1 140.850 (Sym) 1

k 81.883 628.250 3

(716.500 (Sym)

294.511 450,400

(deleted, lack of space

Para! 0.9392 B 0.0356 C* 0.0005
BC <.000I A 0.0091 B* 00357
C <.0001 (BC)* 0.0012 A* 045114
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Using the growth curve model In (20), a trend analysis. of the data in.

Table 9 is easily carried out once the post matrix -P is constructed. -UnlIke

the split-plot example, trends,over the within subjects dimension, factors B

and C, are not. over all nine points but within levels of B and C. That is, we

have only three time polnts.and not nine. The unnormalized orthogonal

nomials for three time point are

t
V

t2 t t3 Sum of Squares

Constant I I I 3

Linear kt -= -1 0 I - 2

Quadratic 0' = 1 -2 6

To extend these over nine_points, defined by a 32 factorial design, we form the

following Kronecker products

Poly:



P =

44

CI C2 C3 C2

C' 6 C' = I I I

el,

,,I.,.' IP V = -I -I -I .0 0 0 I 1

49
til eC' .

k,

I I -2 -2 -2 1 1 -1

CI 11t." 7 0 I -I 0 1 0 :

A,

AC'
6,Q, = I -2 I. I -2. I I -2

0 ®L' = I 0 -1 0 0 0 ,-1 .0
A, ,,,,

LI 6 Q,I.' =
A,

-1 2 -1 0 -0 0 I -2

Q' 6 0.7 -I 0 I 2 0 -2 -I 0
. A, A,

Q' 6 Q' = I -2 I -2 4 -2 1 -2
A. .A,

Using normalized polynomials instead of unnormalized polynomials, the matrix

P for the trend analysis is defined by

.333333 333333 .333333 .333333 .333333 .333333 .333333 .333333 .333333

-.408248 -.408248 -.408248 .000000 .000000 .000000 .408248'1.408248 .408248

.235702 .235702 .235702 -.471405 -.471405 - .47(405 .235702 .235702..235702

-.408248 .000000 .408248 -.408248 .000000 .408248 -.408248 .000000 .408248

.235702 :471405 .235702 .235702 -.471405 .235702 .235702 -.471405 .235702'

.500000 .000000 -.500000 .000000 .000000 .000000 -.500000 .000000 .500000

-.288675 .577350 -.288675 .000000 .000000 .000000 .288675 -.577350 .288675

-.288675 .000000 .288675 .577350 .000000 -.577350 -.288675 .000000 .288675

.166667 -.333333 .166667 -.333333 .666667 -.333333 .166667 -.333333 .J66668

Anatyzing.trends using this procedure has already been discussed by Bock

(1963b) and will not-be considered here. For this type of analysis pis always

.equal to q unleis the model ovei.rthe within dimOilon Is additive. For an ad-

ditive.model we may either select G = I; using the Potthoff-P.oy model, or

G
o'

using the Rao- Khatrl formulation.



4. Growth Curve Analysts and Profile Analysis of Multivariate Repeated

Measuremc

The repeated measures type designs discussed so far in this paper were

such that the researcher obtained commensurable measurements on each subject

over time or over several experimental conditions. ln many experimental si-

tuations, especially longitudinal studies, we often collect data on several"

variates and observe a subject on each of the variates over time. For profile

analysis the time points are unordered experimental conditions. Designs with

multivariate observations on p variates observed over q time puintS or q con-

ditions are called multivariate or multi-response repeated measures designs,,.,

since the multivariate observations are not commensurable at.each time point

but are commensurable over time or conditions, a variable at.a:time, Figure 4.

Treatment Subject tl t2 ...

Ai si
Z1j1

(I)
YID

(I)

Y1j2

(I)

Xijp ,

Xij2

(2),

Yij1

(2)

Yij2

'(2)

Y1JP

...

.

tug =

(q)
k ii

(q)

Y

(q)
, inp

Figure 4. p-variate Observations over Conditions

Since each of the p-variates are observed over q time points (or condi-

tions), it is convenient to rearrange the data in Figure 4 by variates for a

multivariate repeated measures analysis's° that each variate is observed over

.q periods, Figure 5. The data matrix Y for the analysis is of order N x pq

where the first q coluMns correspond to variabje one, the next q ito'/ariable 2,

th
the next q to_variable 3 and so- -on- up to the p' variable. -Alternatively using
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the data as arranged in Figure 4 a multIvariate,mixed model analysis Of vari-

.anoe.procedure may be used to analyze multi-response repeated measures data.

This would be done by simply:extending the untvartate sum of squares in Table

2 to sum of squar4s and products matrices and calculating multIvariate crl.r

teria to test hypotheses: However, for such. an analysis we. must not only as-
.

surre 8 restrictive structure on the vairancecovarlance matrix' associated with

each variable over q time points but that the structure on each varlance-co

variance matrix between variables across time points is constant. This is even

more restrictive than the univarlate assumptions and. for this reason is not

usually recommended. Instead, a multivariate approach should be used.

Treatment Subject 2 ... p

Ai
si

.

Ziji

(t) ,

-Y-01

(2)

Yip

(q).
YID ,

ZI.P.

,

(1)1,

Yij2

(2).

Yij2

(q)

Illij2

... zlip 7

(I)

"Ijp

.,(2)

7Ijp

(q)
71.11,

Figure 5. Data Layout for Trend Analysis of Multivariate

Repeated Measures Design'

The data In Figure 5 may be either trend or profile data. Although the

.analysis of profile data and trend data are,very similar, as seen fair example

in.the analysis of a split-plot design, we shall consider each analysis separ-

ately, fOr elowth curve analysis of the data In Figure 5, the mode given tn

(20) is employed. To use the model, the: lithiber of subjects within Bach treat-

ment must be greater than or equal to the total number of.measurements on each

subject._ For-simplicity, suppose thatIhree measures-are-recorded-for-eich
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subject at q time points sothat-associated with each subject are 3q measurements

all correlated with unknown variance-covariance matrix Eo
. Letting the

curve 'for each of the three multivariate responses be represented by

+ 131;p tP1 pi 1 q

(49) 0 +e t+
Qi°2

tP2 1

P2 4 q

" ti,p
3
-1tP3-1 p3 q

the matrices B and P are defineld as follows:

I th g ro w th

(50)

t
2

t 0

tP t- u°1-I +°1-I 0

0 0 ... 0

o 0 ... 0 t

P
1

P1+132433) x

0 0

0 0 ... 0 0

.
,,

.

o 0 ' ... 0 0

0

t222

0
4

0

ele 0

... 0

goo

(

... 0 0 0 ... 0

. I 0. 0 0

t
q

0 0 ... 0

4.06 000

... tP2 0 0

. 0

... 0 ti t
2

tq

.
. 41" . -,

.o. ..-.7t31
q
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The deSign matrix W is

WJ , 0 *00 0

2

'0

0 . 0 004 0

W =
o 0 0

Nxg
41.0

SOO

where

0 0
tj

g

Is a vector of J unities for J1 subjects within each ofog groups

where J > pg. The matrix P given above has been represented as a Vandermode

matrix; atiernatiVely, we could have used unnormalized or normalized ortho7

gonal polynomials.

Tests commonly investigated with multi-response growth curve data are

similar to unt-response ,data; however, we are interested in analyzing trends

for several different variables simuftaneousiy where.. the degree of.the.poly-

nomfal which "best" describes one variate may be different for another veil-

ate. We are, however, still restricted to fitting A polynomial of the same

degree to all treatment groups.

To illustrate some common multi-response hypotheses, suppose that

= p2 F p3 = q = 3 so that three variates are observed over three time

points and that the number of groups g = 2. Then,

(51) g =
010,0080

II 612 .10 It 012. 10 III XI2

620 621 622 e20 021' 022 .20 21 22

(52)



and

(53)

or

( 549

or

55) P

P =

I

1

2

1

3

0

0

1 4 9 0

0 0 0 I

0 0 0 .1_

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

-1 0. t 0

1 -2 0 '

0 0 0 1

o 0 0 I

0 0 0 1

0 .0 0 0

0 0 0 -

0 0 0 0

.333'431 \AAX733 .)X.10.13

.-.408248

.235702

0

0

0

0 0

-0
P-

o

.000000

-.471405

0

0

.408248

.235702

0

0

A .333333

.o\ -.408248
\\.

.235702

0 \ 0

0 0 0 0

0 0 0) 0

0 0 0 0

I I 0 0

-2 3 0 0

4 9 0 0

0 0 1 1

0 `'0 I 2

0 0 4

0

0 0

0. 0 0 0/

1 1 0 0,

0 I 0 0

-2 I 0 0

0 0 I I

0 0 -1 0

0 0 I -2

0

0 0

0

0

0

0

0

0

I

3

9

0

0

0

0

1

1

0

0

0

0

0

49

.333333.333333 0

.000000 .406248 0 0

.471405 .235702 0

0 0 \.333333 .333333 .333333

o - 408248 .000000 .4Q8248

0 .235702 -.47)405 .2357020
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The first hypothesis of interest rs whether the regression unctions are paral-.

lel for all variables simultaneously:

(56) H :

1 011

012

e
,I I

e
12

This'is tested by defining C' and A as

$ 21

)

022

e21

e
22

E2I

E22

) 0 0 0 0.

0 0 0 0

0,- 0 0

0 0 0 0 0

(57) C' = (I 4) and A = 0 0 I 0 0

0. 0 I 0- 0.

0 .0 0 0 0

0 0 0 0 I 0'

0 0 0

Given parallelism, to test for coincidence,

4



8l0 02o

H 821

812.
8:7-'7

810. 820

( 5 8 ) HC:
I 821

2 822

CIQ C20

C11 C21

C12 C22

the matrices C' and A are given by

(59) C' = (1 -1) A = 1 0

Other hypotheses such as

(80)

or

(61)

021

021

C11

C21

HT:

(811+821

011+021

C11+C21

0

51

812

822

(2

e
22

C12

C22,

(812+022

012+022

C12+E22

0'
0

0

0

0

0

= 0

0
A

given parallelism, may also be tested.
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To test that the best-polynomial for all variables ts,linear, we would

use the test matrices

(62) 7

0 0

1 0

0

0

0 I

0 0.i 0

0 0 0

0 0. i

Given that 1-his-hypothesis is tenable, we have that

p3 <'q. Hence,

(63)

and

(64)

a
10

e
10

820 821
0
20

I 0

2 '3 0.

P =
0 0 0 1'n.

0 0 0 i

< g'152 < g and

0 E
11 10 11J .

0 E
21 20, C21

2 3

o.

We may now test hypotheses about the elements of the. (2 x 6) matrix BL how

ever, the selection of the. weight matrix G affects,the analysis. .Rao (1967)

and Grizzle and Allen (1969) point out 'that weighting does not always produce

shorter confidence intervals. By setting G =I, all the covariates are 15)..

nored and by _using the Rao-Khatri model the covariates are applied to all
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other variables in the'mcdel. That is, the 3q-p
1

-p
2
-p

3
covariates are used

to adjust all the remaining.variabtes simultaneoUsly which Is exactly what

is done in multivariate analysts of covariance designs. To use different

covariates, with different sets -of depen&int variables, the generalized grOwth

curve multivariate model discussed by Kleinbaum (1970. I973b) is\used.

To analyze profile data for measurements' arranged as in Figure 5, the

unrestricted full rank linear model given In (9)'. is used. Letting

pr p2 p3 q=3 for the arrangement of ,population parameters showh-in

Table 16, we consider some hypotheSes which might be of interest-for profile

data.

.Table 16. Means for Mutti-response Profile Data

Variables

Conditions

AI u.11
r

12. 13

u2

PI4

22 P23 tl24

PI5 u16 P17 ' P18 1119

P25 P26 P27 u28 W 29

The first hypotheSIS of interest for profile data is Olether the pro-.

fills fOreach :variable are parailel. That is, is there an interaction be

yeen conditions and treatments. The hypothesis may be stated as',

t
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Q.

(65) H
(AC)**

The matrices and A -to test H(Ac)* are

I.

(66)
(

-I

0

0

C(AC)* = (I -I) and A = 0

0

0

0

0

U
21

-11
22

1122-P23

424-1125,

P25-1126'

1127-1128

1128-1129

0 0

I 0

-I 0 0 0 0

0 1 0 0 0

, I 0 0

0 0 -I 0 0

0 0 0 I 0

0 0 0 -I I

0 0 0 0

70 test for dtfforencos i n tretmonts, H where H Is

HA*.

1118

1119

421

"22

,P23

1124

1125.

1126

1127.

428;

1124



tItie matrices

(88) C' = (I -I) and A = I
9A*

are constructed. For differences in conditions,

11 PI2 PI3

P21 1122 P23

(69) H
PI4 PI5 P16

P24 P25 P26

PI7 Pis P19

P27 P28 P29

the test- matrices are

I

'-I

0

I

0 -I

0

(70) C' = I
2
and A =

C * \°\

0 , 0

0 0

0' 0

0 0

0

'

0

0

0

0 0

0

-1 .0

0

0 0 \7I I

0 0 UN1

55

'Given parallelism, tests fordIfferences,between the two treatments and 'among

conditions are written as
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(71),

3
E uit/3

j=1 0

6
)141

3

E u2J/3

6
"=" 3

J 4'=.
2j/

9 9
% pij /3 7 112J/3

.1=7 Ju7

and

1

2

trzE l
u/1/2

2
1,111/2 v15

1E 1=1

2

1=1
E U12/2

2
E P15/2

1=1

2
E p

16/2
1=1

(72) C:
=1

2
E ut7/2

1=1.

2
I p

18
/2

1=1

2.
E Pi9

1=1

respectively. Hypothesis test matrices to test hypotheses A and c become

C' = (1 -1) A = 0
1

A

0 0



and

(73)
1 I% (

,
2- ) A =

0 0 0 0'

0 I 0

1 -1 0 0

0 0 I 0 0 0

0 0 1 0 0

0 0 -1 -I

0 0 0 I 0

0 0 0 0 1

0 0 0 0

57

Provided the'post matrix A, for hypothetes stated as C'UA,. 0, 4s normalized

so that A'A = I,'multivarlate mixed model multivariate criteria are immediately,

obtained from the multivariate approach for the hypotheses A, C, and AC. Thlt

Is not the case for the hyootheses A*, C* and (AC)* as we showed for split-plot

designs, Timm and Carlson (1973). If the post matrix for testing the parallel-

ism hypothesis is normalized, the multivariate mixed model hypothesis AC is

Immediately recovered from the multIvarlate test.

To illustrate the procedures discussed in this section, data provided

by Di-. ToM Zullo in the School of Dental Medicine at the University of Pittsburgh,

displayed in Table 17 are used.
\
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Table 17. Individual Measurements Utilized to Assess the Changes
In the Vertical Position of the Mandible at Three Time

Points of Activator Treatment

SOr-Me ANS-Me Pal-MP angle

(mm) (mm) (degrees)/

Group Subject
Number' I. 2

I 117.0 117.5

2 109.0 110.5

3 1t7.0 120.0

4 122.0 126.0

5 116.0 118.5

6 123.0 126.0

7 130.5 132.0

8 126.5 128.5

113.0 116.5

Means 119.33 121.72

T2

: I

2 116.5 120.0

3 121.5 125.5

4 109.5 112.0

5 133.0 136.0

6 120.0 124.5

129.5 133.5

122.0 124.0

125.0 127.0

Means 122.78 125.72

3 1 2 3 I 2 3

118.5 59.0 59.0 60.0 10.5 1645 16.5

111.0 '60.0 §1.5 61.5 30.5 30.5 30.5

120.5 60.0 61.5 62.0 23.5 F3.5 23.5

127.0 67.5 70.5 71.5 33.0 /32.0 32.5

119.5 61.5 62.5 63.5 24.5 / 24.5 24.5

127:0 65.5 61.5 67.5 22.0/ 22.0 22.0

134.5 68.5 69.5 71.0 33.0/ 32.5 '32.0

130.5 69.0 71.0 73.0 20. 20.0 20.0

1 18.0 58.0 59.0 60.5 25.0 25.0 24.5

122.94 63.22 64.00 65.61 24.67 25.17 25.11

121.5 63.5 65.0 66.0 28.5 29.5 29.5

127.0 64.5 67.5 69:0 26.5 27.0 27.0

114.0 54.0 55.5 57.0 18.0 18.5 19.0

137.5 71.0 73.5 75.5 34.5 34.5 34.5

126.0 62.5 65.0 66.0 26.0 26.0 26.0

134.5 65.0 68.0 69.0 18.5 18.5 18.5

125.5 64.5 65.5 66.0 18.5 18.5 18.5

128.0 65.5 66.5 67.6 21.5 21.5 21.6

127.28 64.28 66.00 67.17 24.00. 24.22 24.29

v
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From the mean plots of the data in Table 17 for each group and variable,

Figure 6, it appears that the growth curves for the three variables are at

least linear, Some other questions of interest for the -data Include:

(I) Are the groWth curves for the two groups.parallel for one or

more variables?

(2) If we have parallel growth curves, for some variables, are they

coincident?

(3) What are the confidence bands) for the-expected growth curve(s)?,

Depending on whether we take p = q = 3 when analyzing the data in.Table 17,

the procedure used to answer questions (I), -(2) and (3) will differ. For il-

lustration purposes, we will. demonstrate both techniques using a program de-

vekved at the Educational Testing Service called ACOVSM, Jareskog; van-Thillo

and Gruvaeus (1971).
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128

127

126 -r

125

124

123

122

121

120

119

118

SOr
T2

70 --

69 -N-

68 -7

67 --

66 --

65 --

64

63 --

62 --

61 -r

60 --

2

ANS

3 I 2'

30

29

T2 28

27

T
I

261-

25

24 --

23 --

22 --

21

3

20

Figure 6. Mean Plots for Data _Table 17

Pal

0

T
I.....

Assuming that p = q = 3, the matrix 8 for thee data in Table 17 is

B =
447-8.n.771-8-107112*IF)ITT 12

820 821 822 e20 821 022 20 21 22

With P defined in (53), 8 is estimated by

115.778 4.139 70.503 63.278 -0.472 0.417 23.11 1.333 -0.278
II

118.444 5.028 -0.694 62.000 2.556 -0.278 23.622 0.456 -0.078

To test for parallelism



H :

11

812

e
I I

e
12

CI 1

C12

821

822

021

822

21

C22

simultaneously for all variables, the matrices

AI 0 0

= (.1 -1) and A.= 0
.A2

0

0 0 A3

are. used where

0

I for 4=1, 2, 3

)

61

Wilks'It-criterion for the test is A = 0.583 and comparirA.v
0.05

y_L__

0.426 using Wall's table, Walt (1967), the parallelism test lt not rejected.

The p-value for the test is all = 0.3292.

Given parallelism, we next '.hest.for coincidence,
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810 820

014
621

812 822

810 8
20

H : e
11 821

-612 e22

CIO 420

411
r
-'21---

112 C22-

again assuming p = q. For this test,

Or

C' = ( I -I) and A = I
9

Computing Wks A-criterion, A = 0.422. Since tableS for the U distribution

0"0.5
are not available for U- = u

(9 1 16P we may compute either Rao's multivariate

F- statistic, F = 1.216 with 9 and 8 stegrees of freedom or Bartlett's chi-squared

Statistic, X2 = 9.15. with 9 degrees of freedom; both are approximations of the

ieneraL_L6d-i-e-t-r-1-137e0-Isee_liar.--axample (973 .556 -Timm,J974)'. The

p-valves for the two criteria are a = 0.3965 and,a
1)

re-= 0.3575-speCtively,fi.
Nictitating that we would not reject the coincidence hypothesis.

Treating the data in Table 17 as data obtained, from a single group, we

estimate the.Common regression function for all variables simultaneouSly with

B = (117.111 C583 62.039 1.041 0.069 23.617 0.894 0.178)7

--using either a restricted Multivariate linear model or by pooling all the data

into a single group. However, if this equation is taken as our final regression

model we may have overfit one or more variables-. This commonly occurs in ex!-

periments,with live or more time points. Proceeding-we test the hypothesis

o



using the matrices

'0 0 0

0 0

1 0

0 0 0

C' 1 and 0 0

0 I-- 0

0 0 0

0 0 0

0 0

63

to see if the mean trend associated' with each Cariable given by the vector,

(121.056 123.722 125. ill 63.750- 65.000 66.389 24.333 24.694 24.700)

may be adequately represented using a linear mode -I. Performing the test,

0.0
A s: 0.438 and comparing A with Uf ill 0*479 the hypothesis is rejected..,,,,,,,,
The p -value for the test Is ap = 0.0052. Had we fmiled to reject the hypo-

thesis, models for Zullo'i data would have been represented by

Y5Or =
119.240 + 2.028+

TANS
= 62.408 + I . 3 I 9t

yp61 ,zict..24.210 + 0. 183t

if we set.the weight matrix G = I. Confidence bands for Itnearequattons would

be obtained by:setting.

C' I, 8 =
(01Q

,t10 ) and

ti



64

0 0

t 0 0

0

or A= or A=
0

0 0

1

Bands for higher 'order olynomlals fol I.cw similarly. If the growth curves

were not coincident, we could also find confidence intervals for the differ-,

''ence between the two growth curves. /The procedures are iliustrate& by Pott-J-

hoff and Roy (1904), KhiArl (1966), and Grizzle aid Al len (1969). ,

Instead 'of analyzing Zullo's 'data with p = q, suppose that we deciqe

a OiOri or through a- statistical test that the regreSsion model for each

variable was linear. Then, p < q anc

B = am 011 Qlo elf X10 Eft

820 821 820 821: 420 C21

USIng the 'Rao-Khatri model, with G -= S, we test the cOncidence hypo-7c4:'

by using -the matrices.

/

For this test,

HC`

'110 820

sll 821

_10
820,

'II e21

10' E20

CI I

=II -I) and-A =,I
6

C

= 0.440 and comparing A with U°'°5 = 0:271:we conclude
,(6,1,13)
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that'the growth curves for each group.are coincident for all variables. The'

p -value for the testis a = 0.2300. However, with p < q and G = S, the

models fit to each variable take the following form

'ISCr
121.210 + I.820t

TANS
63.285 + .1.196t

'Pal
25.045 --M23t

'which, as expected, do not agree, with the models arrived at by taking G = I

since p < q.

Comparing the three regression models which may have been obtained using

Zullo's data,"the observed and predicted values for the models are displayed in

Tab- Fe -4 8.

Table 18. Regression Models

Q Observed Means

Predicted Means

Linear
(p < q, G,= S)

. ,

Quadratic . Linear,

(P = (p < q, G 1)

121.056 121.355 121.268 121.210
123.722 123.721 123.296 123.030
125.111 125.109 125.324 124.850

63.750 63.750 62.408 63.825
--L----44-:499---:----6.3227-------- -65-.-02+---- --65.400

66.389 66.386 65. 48 66.217
24.333 24.333 24. 10 25.045
24.694 24.693 ,24. 93 25.022
24.700 24.69.7 24.576 24.999

i
F

Using Wilks' A-criterion, we may constr ct (1-0%.simultaneous confl-;

denCe bands for each variable and each model. The generar-express4ons fc4'

each band take the form

a). Potthoff -Roy

f(t) -4,. - (WW)
U4

I-U'

(t'sg)
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with S
e
= YI(I-W(O.W)-1W')Y and Y = Y

o
G-IP'(PG-10')-/

Rao-Khatrl

I

/ f(t) R(4'Self)

-1 -I

e
= (PS P')

R = (W'W).
0,

ItE(WIW) W'Y
o
-BjS Y'W(W'W)1

for a single group problem where U
a

= U0.05(9 I 17)
= 0.2392 when p = q or p < q

and G
0.0

= Vand Ua = U (6,15
;13)

= 0,27T4-when p < q and G = S for our example.

Assuming Zullo's data In Table 17 was obtained at three expertmental

conditions rather than three time points, tests of differences between groups

(67), differences among conditionS,(69), and,- interaction between groups.and .

oonditions (65) would be of primary interest for the muttiVariate obSer4,4
-

tions obSerVed,at each condition. Alternatively, glitenthat theinteraqtion

hypo$esis is tenable tests of differences between groups and differences

amcng_oOn.dl.L-jons, as defined in' (7) and (72), may' be tesetd. I Using.th!prst_7..4
I,

gram. described-in Timm and. Carlson (1973) to analyze the dataiin Table 17,

Wilks' A-criterion and multivariate F-tests for the hypotheses are displayed

In Table,19.

ti
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Table 19. Multi-response Profile Analysis of 7.01ols Data

Hypotheses Wilke A DF Mult-F DF p-value

(AC)* 0.583 (6, I, 16) 1.311 ( 6; II) 0.2392

A* '0.422 (9'. I, 16) 1.216 ( 9, 8) 0.3965

C.,} 0.026 (6, 2, 16) 9.459 (12, 22). <.0001

A 0.884 (.3, 1, 16) 0.613 ( 3, 14) 0.6176

\
C 0.034 (6, J, 16) 52.437 ( 6, 11) <.000I

As we mentioned previously, mixed,model multivariate tests are obtained

from the appropriately normalized muitivariate hypotheses In Table 19. To

see this,. consider the hypotl7esis and error mean square's and products matrices

fOr testing C; the. matrices Were obtained by normaliling the'Post matrix
/

A =

0 0 0 0

0 0 0 0

-1 0.. 0 0 0

0 0- I 0 0 0

0 0', 0 1. 0 0

0 0 -1 0 0

0 -.0 0 0 0

0 0 0 0 . 1

0 0. 0 -I

for the hypothesis given in (72).when writing the hypothesis in the form

CNA = 0:
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MSP =

mspe - -

68.028 \

- 26.927 \,4.898 ).

96.319 -17.521 62.674

1.904 0.058 /

65

2.927

13.383

- 7.493

0.60

-0.2 7

57

-0.042

425

co

01,233

0.532

- 2.434

/

8.708 0 1.210

1.363 -4.875 -0.148 -0.677 0.379

0.337

-0.199

_0.089,

0.161

- 0.116

0.556

-0.202 1.148

0. 79 0.055

0.183 -0.019 -0.634 0.383),

4veraging the "cir led' diagonal element of the above matrices, the-MSPc and

1ISP
E
matrices for t e multivirlate mixeJ model test of C are obtained:

I

76.463

NISPc = 47.894 3 .366

7.373 4 280 0.795

e degrees of'freedom

h
ar v

*
and v

e'
obtained from the fp ula

0.472

/

MSP
E
- 0.273 0.852

-0.271 -0.164 0.773

ssociated with the-multivariate mixed model matrices

h
Rt Wp = 1'6/3 = 2

i

=-v
e
.R 11 AWp = 16.6/3 = 32

Who 'denotes the number f varl blet, RCA) isithe rank of the post matrix

)N, nd vh and ve are the by thes s and error degrees'Offreedom associated

wit WI/1kt' A-criterion for t sti g C as displayed In Table 18. Wilks' A-

I

criterion for testing C using h
)

multivariate mixed model is A = 0.0505
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which is compared to 11
0.05

= 0.663 or using the multivariate F-crlterion,
-(3,2,32)

F(6,60) = 30.64, which we compare with F
0.05
(6,60)

= 3.12. The p-value for the

test is less than 0.0001.

Analyzing the data a'variable at a time using three univarlate mixed

model split7plot designs, the univariate F-ratios for testing C are immediately

obtained from the multivariate_ mixed model

are

Variables F-value

analysis. The univeriate F- ratios

p-value_

SOr 76.463/0.472 = 162.1 < :0001

ANS 31.366/0.852 = 36.82 < .0001

Pal 0.795/0.773 = .1.03 0.3694

5. Summary

In this paper we have shown how multivariate models may be used to

analyze repeated measures profile and growth curve data when univariate or

multivariate mixed model assumptions are not tenable. This should. not be

taken to mean that a multivariate-approach to the analysis of such designs

should always be Used or thatAt is always most appropriate.--Ff tive-restri-o=-
.

tive mixed model assumptiOns are tenable for. a data. we would always use

the simplest model to analyze the data. For this) reason,- we have shown how

one may recover standard mixed model tests from certain multivariate hypo-

theses. Procedures for testing whether ixed model assumptions are tenable

are discusSed in Timm. (1974).
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